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 Emotion identification has been widely researched based on facial 

expressions, voice, and body movements. Several studies on emotion 

recognition have also been performed using electroencephalography (EEG) 

signals and the results also show that the technique has a high level of 

accuracy. EEG signals that detected by standart method using exclusive 

representations of time and frequency domains presented unefficient results. 

Some researchers using the convolutional neural network (CNN) method 

performed EEG signal for emotional recognition and obtained the best results 

in almost all benchmarks. Although CNN has shown fairly high accuracy, 

there is still a lot of room for improvement. CNN is sensitive to its 

hyperparameter value because it has considerable effect on the behavior and 

efficiency of the CNN architecture. So that the use of optimization algorithms 

is expected to provide an alternative selection of appropriate hyper parameter 

values on CNN. Particle swarm optimization (PSO) algorithm is a 

metaheuristic-based optimization algorithm with many advantages. This PSO 

algorithm was chosen to optimize the hyperparameter values on CNN. Based 

on the evaluation results in each model, hybrid CNN-PSO showed better 

results and achieved the best value in 80:20 split data which is 99.30% 

accuracy. 
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1. INTRODUCTION 

Research on emotion recognition has also been performed using electroencephalography (EEG) 

signals and the results show that the technique has a high level of accuracy [1]. Through EEG, information 

about mental activity and human emotional states can be known and the information produces different values 

when emotional states change. Therefore, the use of EEG is considered effective for emotional identification 

or prediction [2]. 

Traditional methods of EEG signal classification, which use separate representations for time and 

frequency domains, often yield unsatisfactory results. In this approach, EEG signals are decomposed into  

time-frequency representations using discrete wavelet transform (DWT). Statistical features are then calculated 

to represent the distribution of the signals [3], [4]. Research on EEG signal recognition using end-to-end models 

based on convolutional neural networks (CNNs) has been conducted and obtained good results in almost all 

classification benchmarks [5], [6]. The EEG signal representation problem in the database for emotion analysis 

https://creativecommons.org/licenses/by-sa/4.0/
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using physiological (DEAP) dataset shows that the proposed method achieves an accuracy of 77.98% on 

valence recognition and 72.98% on arousal recognition [6]. 

Although CNN standards have shown considerable accuracy, there is still a lot of room for 

improvement [7]. CNN performance cannot be expected by applying the same architecture to different types 

of tasks, it needs to be adjusted the architecture for specific tasks so as to produce better performance [8]. CNN 

also requires a large number of samples for the training phase. In addition, CNN has many hyperparameters 

[9] and a wide variety of architectures that are considered a challenge and it is difficult to determine the best 

value of hyperparameters manually. CNN is sensitive to its hyperparameter value because it has a considerable 

effect on the behavior and efficiency of the CNN architecture [10]. To attain hyperparameters with better 

performance, experts must manually configure a set of hyperparameter options. However, different datasets 

require different models or hyperparameter combinations, making it complicated [11]. 

Research on efficient optimization of hyperparameter values in CNNs using particle swarm 

optimization (PSO) resulted in an increase in image recognition accuracy by 0.7%-5.7% using the  

Alexnet-CNN standard [9]. Research on the use of PSO on CNN, which is one of the basic methods in deep 

learning has been conducted by several researchers [7], [12], [13]. The use of PSO in the training process aims 

to optimize the results of the solution vector on CNN in order to improve recognition accuracy. Experiments 

show that the accuracy that can be achieved in 4 epochs is 95.08%. These results are better than conventional 

CNNs and deep belief networks (DBNs). Its execution time is also similar to conventional CNN. This study 

proposes a CNN and PSO deep learning approach to optimize multiple hyperparameters, resulting in higher 

results [14]. 

Therefore, based on previous research, researchers will test the CNN method for EEG signal 

classification to detect types of emotions. Then optimization will be carried out with the PSO method on the 

initialization of learning rate, epoch, and batch size to improve the accuracy of signal recognition in this study. 

Next will be made a comparison with the CNN algorithm itself without the optimization process from the PSO. 

 

 

2. METHOD 

2.1.  Hybrid modeling of convolutional neural network–particle swarm optimization 

The hybrid CNN-PSO algorithm is built to provide many alternatives in determining the value of 

CNN hyperparameters using the PSO algorithm, so that it is expected to avoid local optimal solutions. CNNs 

take their name from mathematical linear operations between matrices called convolutions. The architecture of 

CNN that shown in Figure 1 has many layers, including a convolutional layer, a non-linear layer, a pooling 

layer and a fully-connected layer. Convolutional and fully-connected layers have parameters but pooling and 

non-linear layers have no parameters. 

 

 

 
 

Figure 1. CNN architecture 

 

 

PSO is a method inspired by the nature of a group of animals such as birds, termites, bees, or ants. 

Three crucial aspects of PSO include particles, cognitive and social components, and particle velocity. Each 

particle represents the solution to a given problem. Particle learning includes two elements, which are particle 

experience (cognitive learning) and the combination of whole swarm learning (social learning) [15], [16]. 

Cognitive learning in the form of pBest is the best position a particle can ever reach, while social learning in 

the form of gBest is the best position of all particles in a swarm. The parameters pBest and gBest are used to 

calculate the speed of particle (1) as well as the speed of calculating the position (2) of the next particle. 

Speed update: 

 

𝑉𝑖,𝑚
𝑛𝑒𝑤 = 𝑊. 𝑉𝑖,𝑚

𝑜𝑙𝑑 + 𝐶1 × 𝑅 × (𝑃𝑖,𝑚
𝑙𝑜𝑐𝑎𝑙 𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑚

𝑜𝑙𝑑)  + 𝐶2 × 𝑅 × (𝑃𝑚
𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡

− 𝑋𝑖,𝑚
𝑜𝑙𝑑) (1) 

 

Position update: 

 

𝑋𝑖,𝑚
𝑛𝑒𝑤 =  𝑋𝑖,𝑚

𝑜𝑙𝑑 +  𝑉𝑖,𝑚
𝑛𝑒𝑤 (2) 
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Where 𝑉𝑖,𝑚 is speed of the ith particle at the ith iteration, W is the inertial weight coefficient, 𝐶1, 𝐶2 are the 

acceleration constants (learning rate), 𝑅 is a random number (0-1), 𝑋𝑖,𝑚 is the current position of the i-th particle 

in the i-th iteration, 𝑃𝑏𝑒𝑠𝑡𝑖 is the previous best position of the i-th particle, and 𝑃𝑔𝑏𝑒𝑠𝑡 is the best particle 

among all particles in a group or population. The optimization process is carried out by providing alternative 

hyperparameter values on CNN a number of particles in the PSO algorithm. It then makes the output value of 

CNN an objective function of the PSO, by finding the maximum value of several alternative processes in each 

article [17]. 

 

2.2.  Dataset 

For experimental purposes, the dataset used was EEG data that focused on capturing brainwave 

patterns associated with various emotions and feelings. This dataset consists of 2,549 variables, of which 2,548 

variables contain decimal data, while 1 other variable contains data in the form of strings used as labels. For 

three minutes under each state (positive, neutral, and negative), data was recorded from two participants, 

consisting of one male and one female. This data collection process was carried out using an EEG muse 

headband equipped with dry electrodes to record EEG activity at TP9, AF7, AF8, and TP10 location points 

[18], [19]. The dataset is shown in Table 1, with the following content specifications: 

 

 

Table 1. Dataset specifications 
Data label Number of data 

Positive 708 
Negative 708 

Neutral 716 

Total 2,132 

 

 

In the context of 2,549 variables, this study applies an even division to form two datasets, each 

consisting of 1,275 variables. Of these, 1,274 variables will contain decimal data, while 1 variable will serve 

as a label. The next step is to train both datasets that have been formed. The first dataset will be named  

"eeg-emotion-1," while the second dataset will be named "eeg-emotion-2." This process is designed to create 

two similar but independent subsets of data for training purposes. 

 

2.3.  Pre-processing 

The data pre-processing that has been done in this study includes data transformation and 

normalization, preparing it for data analysis and deep learning implementation. In the context of using machine 

learning algorithms, categorical data cannot be directly processed by those algorithms. Therefore, categorical 

data needs to be converted into numerical form before it can be used in the analysis process [20], [21]. This 

research involves using label encoding to convert class variables from string data to numeric values. This 

transformation process maps three classes of strings, namely neutral to class 0, positive to class 1, and negative 

to class 2. Next, StandardScaler is applied as a normalization method to the dataset. This process aims to change 

each feature (column) in the dataset so that it has a mean of zero and a standard deviation of one. 

 

2.4.  Convolutional neural network hybrid modeling–particle swarm optimization 

The process of modeling data in deep learning will be depends on selecting the right model 

architecture, building a model structure with appropriate layers, initializing parameters, selecting loss functions 

and optimizers, as well as training the model using training data by updating parameters through optimization 

algorithms. After training, the model is evaluated using validation data to check its performance, and 

hyperparameters can be reset to improve results [19], [22]. Final testing is done using unseen test data.  

Figure 2 is the complete process of CNN's PSO. 

CNN is very effective in understanding visual data, recognizing patterns, as well as extracting features 

hierarchically [23]–[25]. CNN architecture is a combination of three components; Convolutional layer, which 

contains a number of filters to apply to the input. Each filter scans the input using point products and delivery 

methods to generate a number of feature maps in a single convolutional layer [4]. 

In this study, a one-dimensional CNN architecture was used that has a specific configuration to 

process data. The architecture consists of a convolution layer with 16 filters, each measuring 10, followed by 

a maxpooling layer with size 2. The hidden layer of the CNN has 100 neurons and uses the activation function 

of hyperbolic tangent (tanh). The importance of selecting this activation function is proven by experiments, 

where the use of the rectified linear unit (ReLU) activation function results in unsatisfactory performance. In 

this study, PSO was formed with a configuration of 3 particles and 5 dimensions. In this scenario, the PSO 
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algorithm will use 3 particles as search agents to explore a search space that has 5 dimensions, which includes 

hyperparameter variables to be optimized. 

 

 

 
 

Figure 2. Detail process of CNN–PSO 

 

 

2.5.  Hyperparameter optimizer validation 

In this study, the Optunity library was used to perform hyperparameter optimization on a model. 

Libraries such as optunity and optunity. metrics are imported, as well as the particle swarm solver module from 

the optunitysolvers library. The search dictionary is used to define the range of hyperparameter values to be 

explored in the optimization process. Then, the performance function is created with three hyperparameters: 

lrate, epochs, and batchsize. 

The validation process of hyperparameter optimization is carried out by considering the range of 

values on several key parameters, including learning rates ranging from 0.0001 to 0.01, epoch numbers ranging 

from 1 to 100, and batch sizes ranging from 0 to 1. For batch sizes less than 1, a value of 32 is used, a batch 

size less than 2 uses a value of 64, and batch sizes not included in both use a value of 128. In addition, there 

are other parameters such as the number of particles is 3, PSO dimensions are 5, and the number of evaluations 

is 10. 

 

 

3. RESULTS AND DISCUSSION 

This research involved training ten models, namely five models (models 1-5) on the eeg-emotion-1 

dataset and five models (models 6-10) on the eeg-emotion-2 dataset. Each model is trained and evaluated 

according to the configuration described earlier. Table 2 shows the overall experimental results of the confusion 

matrix for the eeg-emotion-1 dataset using different data sharing. Meanwhile, Table 3 shows the results of 
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confusion matrix experiments for the eeg-emotion-2 dataset using different data divisions. It can be seen that 

90:10 data division gives the lowest false positive and false negative values. 

 

 

Table 2. Comparison of confusion matrix eeg-emotion-1 classification results 
Ratio data TP FP FN TN 

90:10 212 2 2 424 

80:20 415 12 12 830 
70:30 621 21 21 1,242 

60:40 830 23 23 1,660 

50:50 1,033 33 33 2,066 

 

 

Table 3. Comparison of confusion matrix eeg-emotion-2 classification results 
Ratio data TP FP FN TN 

90:10 208 6 6 416 

80:20 416 11 11 832 
70:30 624 16 16 1,248 

60:40 837 16 16 1,674 

50:50 1,037 29 29 2,074 

 

 

3.1.  Model 1 

The ratio of datasets used in model 1 is 90:10. The training accuracy obtained in model 1 is 99.07. 

After the data was normalized, the data was trained by adding a PSO algorithm and obtained an accuracy of 

98.60. In the case of model 1, CNN coupled with PSO does not affect the accuracy increase.To see the 

comparison of training and testing per epoch in the CNN accuracy curve, it can be seen in Figure 3, while the 

loss curve is in Figure 4. Then, the accuracy and loss curves of both training and testing for CNN+PSO can be 

observed in Figures 5 and 6. Although the accuracy of the CNN model reached 99%, the performance curve 

showed a less significant improvement, as well as CNN+PSO which showed indications of overfitting on the 

loss curve, despite obtaining high accuracy [12]. 

 

 

  
  

Figure 3. CNN accuracy curve Figure 4. CNN loss curve 

 

 

  
  

Figure 5. CNN+PSO accuracy curve Figure 6. CNN+PSO loss curve 
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3.2.  Model 2 

In model 2, training and testing are performed by dividing the data in an 80:20 ratio. The results of 

the performance evaluation of the CNN in this model showed an accuracy of 97.19%. After going through the 

data normalization stage, we decided to involve a PSO algorithm to improve performance. The increase 

resulted in an accuracy of 98.36%. Figures 7 and 8 show the accuracy and loss curves on the CNN, while 

Figures 9 and 10 represent the accuracy and loss curves on the optimized model using the PSO algorithm. The 

curve produced by the second model shows less satisfactory quality compared to the first model, with 

indications of overfitting. 

 

 

  
  

Figure 7. CNN accuracy curve Figure 8. CNN loss curve 

 

 

  
  

Figure 9. CNN+PSO accuracy curve Figure 10. CNN+PSO loss curve 

 

 

3.3.  Model 3 

In the third model, we repeated similar steps to the previous model, with a 70:30 variation in data 

comparison. This model achieved an accuracy of 97.03%, which did not surpass the performance of the two 

previous models. The accuracy and loss curves can be seen in Figures 11 and 12. After going through the 

normalization stage, we continued CNN training with the addition of a PSO algorithm for comparison of 

results. Finally, the accuracy achieved by the CNN+PSO model is 97.19%. In addition, the accuracy and loss 

curves are also formed which are seen in Figures 13 and 14. The performance of the third model still shows 

unsatisfactory quality due to overfitting detected, both on the CNN architecture and models that have been 

improved using the CNN+PSO algorithm. 

 

3.4.  Model 4 

Furthermore, the fourth model involved training the eeg-emotion-1 dataset with a data comparison of 

60:40. Confusion matrix is used to calculate precision, recall, and F1-score with an accuracy of 97.30%. 

Information on the accuracy and loss curves of the CNN model is presented in Figures 15 and 16. Furthermore, 

this model gets additional training with the application of PSO algorithms to improve accuracy. This results in 

an accuracy of 97.66%. The accuracy and loss curves for the CNN+PSO model can be observed in  

Figures 17 and 18. On the loss chart of the fourth model, train loss shows a positive increase by continuing to 

decrease near 0. However, this does not apply to loss validation which actually shows an upward trend, even 

though it remains below the value of 1, resulting in overfitting. 
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Figure 11. CNN accuracy curve Figure 12. CNN loss curve 

 

 

  
  

Figure 13. CNN+PSO accuracy curve Figure 14. CNN+PSO loss curve 

 

 

  
  

Figure 15. CNN accuracy curve Figure 16. CNN loss curve 

 

 

  
  

Figure 17. CNN+PSO accuracy curve Figure 18. CNN+PSO loss curve 
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3.5.  Model 5 

In the fifth model, the data was trained and tested at a ratio of 50:50. By still using the same 

hyperparameters, the accuracy obtained reaches 96.90%. However, the results from the fifth model showed the 

lowest accuracy when compared to the four previous models using the eeg-emotion-1 dataset. In addition, an 

overview of the accuracy and loss curves of the CNN model can be found in Figures 19 and 20. Furthermore, 

this model gets improved performance through retraining by integrating the PSO algorithm. As a result, 

accuracy increased by 0.66% to reach 97.56%. Information on the accuracy and loss curves of the CNN+PSO 

model can be found in Figures 21 and 22. The performance of this model is far behind compared to the other 

four models, this can be seen from the CNN+PSO loss curve which has a significant difference. Although both 

train loss and validation loss remain below 0, the results obtained are still unsatisfactory. 

 

 

  
  

Figure 19. CNN accuracy curve Figure 20. CNN loss curve 

 

 

  
  

Figure 21. CNN+PSO accuracy curve Figure 22. CNN+PSO loss curve 

 

 

3.6.  Model 6 

In the sixth model, we trained the eeg-emotion-2 dataset by dividing the data in a 90:10 ratio. By 

adopting the same parameters as the previous model, the accuracy of CNN on this model reaches 97.20%. The 

next step involves training the data with the application of the PSO algorithm, which results in an accuracy of 

97.66%. This suggests that the use of PSOs can slightly improve accuracy, although not significantly. 

Comparison of accuracy and loss curves in the CNN model is shown in Figures 23 and 24. Meanwhile, the 

accuracy and loss curves in the CNN+PSO model are seen in Figures 25 and 26. When compared with the 

training results of the eeg-emotion-1 dataset using the same data comparison and using both CNN and 

CNN+PSO architectures, the sixth model resulted in lower accuracy and variable loss values, although still 

below the value of 0. 
 

3.7.  Model 7 

In the seventh model, data training was carried out by dividing the dataset in an 80:20 ratio. As a result, 

the accuracy achieved by this model reaches 97.42%. By involving the PSO algorithm in the next stage of 

training, accuracy was successfully increased to 99.30%. Comparison with the second model, which involves 

sharing the same data and identical methods, shows improved performance on the seventh model. However, the 

resulting performance curve is still not optimal. Details on the CNN accuracy and loss curves are shown in 

Figures 27 and 28, while the CNN+PSO accuracy and loss curves are shown in Figures 29 and 30. 



Int J Artif Intell  ISSN: 2252-8938  

 

Hyperparameter optimization of convolutional neural network using particle swarm … (Dian Palupi Rini) 

555 

  
  

Figure 23. CNN accuracy curve Figure 24. CNN loss curve 

 

 

  
  

Figure 25. CNN+PSO accuracy curve Figure 26. CNN+PSO loss curve 

 

 

  
  

Figure 27. CNN accuracy curve Figure 28. CNN loss curve 

 

 

  
  

Figure 29. CNN+PSO accuracy curve Figure 30. CNN+PSO loss curve 

 

 

3.8.  Model 8 

Performance results from the confusion matrix that will be used to calculate precision, recall, and  

F1-score with an accuracy of up to 97.50%. After the implementation of the PSO algorithm, the accuracy was 
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successfully increased to 98.12%. Information on the comparison of training and testing per epoch in the 

accuracy curve of the CNN model is presented in Figure 31, while the loss curve is shown in Figure 32. 

Furthermore, comparison of accuracy curves and losses of training and testing of CNN+PSO models can be 

observed in Figures 33 and 34. It can be seen that the loss curve in the CNN+PSO model shows suboptimal 

results, which may be caused by a decrease in accuracy at the validation stage that causes overfitting. 

 

 

  
  

Figure 31. CNN accuracy curve Figure 32. CNN loss curve 

 

 

  
  

Figure 33. CNN+PSO accuracy curve Figure 34. CNN+PSO loss curve 

 

 

3.9.  Model 9 

In the ninth model, the ratio of datasets used is 60:40. The training accuracy of the CNN model reached 

98.12%. After normalizing the data, the model was trained with the PSO optimization algorithm involved, but 

this did not result in a significant increase in accuracy, only about 98.01%. Details about the accuracy and loss 

curves of the CNN model are seen in Figures 35 and 36. The results of the CNN+PSO model also illustrate a 

similar situation, where the accuracy curve at the validation stage decreases compared to the training accuracy, 

as a result of the validation loss value continues to increase. This information is shown in Figures 37 and 38. 

 

 

  
  

Figure 35. CNN accuracy curve Figure 36. CNN loss curve 
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Figure 37. CNN+PSO accuracy curve Figure 38. CNN+PSO loss curve 

 

 

3.10.  Model 10 

The tenth model, which was the last model to be trained and tested using 50:50 data sharing from the 

eeg-emotion-2 dataset, achieved an accuracy of 97.28%. As with previous models, it also faces challenges in 

the form of suboptimal performance curves. A decrease in validation accuracy and an increase in validation 

loss value also affect the performance of this model. 

Information about the accuracy and loss curves of the CNN model is shown in Figures 39 and 40. 

Similarly, the accuracy curve shown in Figure 41 and loss in the CNN+PSO model reflect a similar situation, 

almost identical to the fifth model tested with the same data sharing. In both cases, there was an increase in 

validation loss which resulted in an overfitting tendency as shown in Figure 42. 

 

 

 
 

  

Figure 39. CNN accuracy curve Figure 40. CNN loss curve 

 

 

  
  

Figure 41. CNN+PSO accuracy curve Figure 42. CNN+PSO loss curve 
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Results from all ten CNN and CNN+PSO models that have been trained and tested, documented and 

compared in Table 4. In the case of the eeg-emotion-1 dataset, the first model with 90:10 data sharing using 

CNN obtained the highest accuracy of 99.07%. Meanwhile, training and testing using the eeg-emotion-2 

dataset, the seventh model involving the PSO algorithm, achieved a peak accuracy of 99.30%. However, when 

evaluating the quality of the performance curve, models trained and tested using CNN produced better curves. 

 

 

Table 4. Comparison of accuracy results 
Model Metode Accuracy (%) 

1 CNN 99.07 
CNN+PSO 98.60 

2 CNN 97.19 

CNN+PSO 98.36 
3 CNN 97.03 

CNN+PSO 97.19 

4 CNN 97.30 

CNN+PSO 97.66 

5 CNN 96.90 

CNN+PSO 97.56 
6 CNN 97.20 

CNN+PSO 97.66 

7 CNN 97.42 
CNN+PSO 99.30 

8 CNN 97.50 
CNN+PSO 98.12 

9 CNN 98.12 

CNN+PSO 98.01 
10 CNN 97.28 

CNN+PSO 97.37 

 

 

We compared our model with two other models which also use eeg based brainwave dataset. The first 

model explores single and ensemble methods for classifying emotions by reducing them to smaller datasets 

through feature selection using OneR scores, Bayes network, information gain, and symmetrical uncertainty. 

They achieved an overall accuracy of about 97.89% [19] and the second model used an applied evolutionary 

algorithm to select the most informative features from the initial feature set. Multilayer perceptron (MLP) 

optimization is performed using an evolutionary approach before classification to estimate the best 

hyperparameters of the network. Deep learning and adaptation using long short-term memory (LSTM) are also 

explored, and the adaptive boosting of both types of models is examined for each problem. The obtained results 

show that an adaptive boosted LSTM can achieve an accuracy of 84.44%, 97.06%, and 9.94% attention, 

emotion, and numerical datasets, respectively [26]. Compared with the existing techniques, the proposed 

techniques achieved a higher level of accuracy of 98% by applying the hybrid CNN with PSO. 

 

 

4. CONCLUSION 

The main focus in this study was to classify EEG signal data for emotion detection using CNN 

algorithms. To enhanced the CNN performance, the hyper parameters in the CNN algorithm are optimized 

with the PSO algorithm. Based on the evaluation results in each model, hybrid CNN-PSO showed better results 

an accuracy rate of 99.30% compared to CNN. The comparison between the existing algorithms that used the 

same data (i.e OneR, Bayes network, information gain, and an adaptive boosted LSTM) shows that hybrid 

CNN-PSO has better performance. However, although hybrid CNN PSO provides better results, the quality of 

the performance curve CNN produces a better result. So, for further research is still needed to improve the 

performance of machine learning by tuning the hyper parameter or using another optimization algorithm. 
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